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Variable-Range Hopping Electron Transfer through Disordered Bridge States: Application

to DNA

I. Introduction

In experiments on charge transfer through a DigAtack, a
wide range off-values, values which characterize the exponent
of the decay of the rate constant with distance, have been
measured. In pioneering experiments of the Barton gtaup,
values as small as 0.17A were reported. Similarly smajs
values were reported by Schuster e-dhnd were discussed
in terms of a phonon-assisted polaron hopping model. Other
experiments ! yielded larger values up t68 = 1.4 A1, for
example, in Fukui and Tanakaand indicated the superexchange
transfer mechanism well-known from electron transfer in

proteins!?

It was understood from earlier theorfig$*(see also the recent
work in ref 15 and 16) that depending on the energetics of the
system studied, either the superexchange mechanism or th
hopping mechanism dominate the observed electron/hole trans-
fer, leading to the strong or weak distance dependence of the
rate constant, respectively. Numerical calculations applying a
Redfield relaxation model were perforniédn a model doner
bridge—acceptor system. The latter was coupled to one effective
high-frequency mode, of which the potential energy minimum
was shifted by the reaction. It was found that for large bridge
lengths the rate constant becomes weakly dependent on distanc
and the transfer occurs in a hopping-like mechanism whereas
for shorter bridges the tunneling dominates and a strong
exponential distance dependence for the rate was obtained. Th
same result was obtained in theoretical studies performed using
a Liouville pathway correlation-function approat#t’ The latter
included the coupling of the electron to a manifold of vibrationa
modes and contained the reorganization of a whole set of nucleal
coordinates involved in the electron transfér.

Experimental evidence on the critical role of the energetics
of the system was provided by Meggers et?akho demon-
strated that the holes for short bridge lengths of adenines (A’s)
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A theory for electron transfer through a dordiridge—acceptor system is described that involves tunneling

and hopping-like transfers and an intermediate regime. The theory considers how a delocalization of electronic
states and static and dynamic disorder in electronic energies influence the charge transfer rate and is used to
study experiments on hole transfer through DNA. While an exponential distance dependence of the yield of
hole trapping is observed experimentally for small bridges, the yield for long bridges is reported to be almost
distance-independent. For long bridge lengths, for which thermally activating hopping dominates over tunneling,
the model considers two competing channels, a hopping via localized states and a transfer through partly
delocalized states. The variable-range hopping mechanism and the delocalized states aspect of the theory are
used to interpret the flat rather than a slow decrease of yield with increasing distance reported in experiments
with long bridges.

will tunnel through the A’s and hop between guanines (G’s),
an experiment that prompted extensive theoretical analjsés.

The application of ultrafast time-resolved spectroscopy made
it possible to resolve the charge-transfer dynamics in real time.
In experiments on an ethidium systé#g distance-independent
rate was found for hole transfer between a photoexcited ethidium
and a deazaguanine for bridges of two, three, and four bases.
There was also a decrease of the amplitude of the ptpngbe
signal for longer bridges, which was explained by static disorder.
This finding shed some light on earlier frequency domain
experiment& on the same system, which had yielde@ a
0.1; the time-domain experiment suggested that fhisalue
does not contain information on the intrinsic distance depen-
dence of the rate constant per se but rather reflects the disorder.
Under such conditions, the slow step is not the transmission
ealong the chain of base pairs.

In time-domain experiments on DNA hairpins, an exponential
distance dependence of the rate constant of hole transfer between
a stilbene and a guanine was found with & 0.778 A similar

J value was obtained in recent time-resolved experiments on
an aminopurine (Ap) systelfifor short bridge lengths. The rate
constant between Ap and G in Ap(¥G became distance-
i@dependent forN > 3, an indication of a change from
Superexchange to hopping-like transfer. Bixon and Jottner
explained an experimetiton hole transfer between guanine
ériplets in terms of thermally induced hopping.

Recently, in another experiméhtby the Giese group,
experimental evidence for the presence of both transfer mech-
| anisms was obtained in measurements of the distance depen-
rclence of the yield of DNA cleavage triggered by hole transfer.
As expected, for short bridgedN(< 3) the superexchange
mechanism dominates and the relative yield of DNA cleavage
decreases exponentiall (& 0.7) with distance. For bridge
lengthsN > 3, a transition occurs in which the relative yield
becomes almost distance-independent. As shown below, the
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theory is intended to be of more general use than just to explain kg kg k k

. ) ) A A, B B
a certain experiment on hole tranfer in DNA. . e L e N
The present theory combines different aspects of rét&ie B .
theoretical approaches: The Hamiltonian and the description k, 2
P k

of the dissipative hole transfer is similar to those used by Okada K 2

G

et al.}* though the execution of the theory is different. Whereas T 8

Okada et al* used a projection operator technique to obtain \ GGG

the rate, we use simple time-dependent perturbation theory. Also, Ky Ks —_—
PG

Okada et al. used a Brownian oscillator model for the description
of the electron-vibrational coupling, and here we use a simple
harmonic oscillator approach. The Brownian oscillator ap-
proacﬁ? des_c”bes dlsslpatlon of elegtronlc energy.by a dampmg Figure 1. Scheme of hole transfer investigated in Giese's experifient.
of the vibrational motion of a few primary harmonic oscillators
that couple to the electronic states. The damping results from a
coupling between the primary and a large number of bath
oscillators. In the harmonic oscillator approach, all oscillators
couple directly to the electronic states and dissipation occurs

because of destructive interference of the many harmonic deprotonation and subsequent H-abstraction. Therefore, a critical

modulations O.f electrorylc.ene.rgles. Georgievski .eloadot.ed assumption in the interpretation of these types of experiments
that an effective description in terms of harmonic oscillators .

o . . is that the ratio of the irreversible reaction with water and repair
can be found within an approximate cumulant expansion even does not depend on the distance between G and GGG). In the
for a strongly anharmonic system. If the number of primary P j

oscillators becomes very large and the damping by the bath E)r(izere”nlg:t’ ttt:]se F;L‘ﬁ”;f‘iﬁgﬂifﬂii:;%pﬁ ?:?J:gil;or %fseriint
oscillators becomes zero, the two approaches are formally 9 gths, ’ 9

identical. We use this limit to show the equivalence of the S(f‘)?GG?' Tgetrelatlvg y'eldd)g‘éege deperrllq‘z’on;he rattedof
expressions of the rate constant derived here with the earlier ole transier between & an across S. AS note

resulti4 The present result appears simpler than the earlier One_earlier, two distinctly different path\_/vays contribute to this rate

In the application, we investigate here the effect of static disorder gonstgbnta The hole mag tugnel directly from G rt]o GG"G as

that was not considered in ref 14. Very recerfigerlin et al. escribed in Figure 1 by the rate constagf or thermally

gave an explanation of the Giese experird@int terms of a  activated, it may hop through the bridge, a process that is
phenomenological model that used a description of the bridge 4€Scribed in Figure 1 by the rate constakisk-y, ks, ko, and

in terms of a tight-binding band. The present treatment includes K-2- The kinetic equations for the scheme in Figure 1 are given
in addition a description of dynamic and static disorder of this by

band and yields a phenomenon that has been termed variable-

range hopping?! Variable-range hopping was applied as a very aG _ P(t) — (K, + ks + k)G + k_,A, + k ;GGG (la)

\1, Ky

PGGG

or transferred to a sink, GGG, and trapped there with a rate
constantk; (as noted in ref 9, only about 10% of the injected
holes react irreversibly with water and can be detected, whereas
the major part of oxidized G and GGG is repaired by

useful concept by Yu and Soffgin their treatment of the dt
measured temperature dependence of electrical conductivity in
DNA.32 dA,
The paper is organized as follows. The kinetic scheme is ot 16— (kg T k)AL + kgAy (1b)

given in section 2 for a charge transfer between a single guanine

(G) and three adjacent guanines (GGG) connected by a bridge dA,

of adenines (A). An analytical formula for the hopping transfer " n _ —9 + n=2toN-—1) (1c
is derived and examined, taking into account thermal-activated ~ dt ka1~ 2k F ke, N=1) (1c)
hopping through nearest neighbors in the bridge. The model is

used to motivate the need for a more general theory, based on dA,

variable-range hopping instead of only nearest-neighbor hop- — = kgAy_; — (kg + k))Ay + k_,GGG (1d)
ping, which is then formulated. A microscopic rate constant is dt

derived in section 3 for a transition between delocalized

electronic states. Account is taken of the local coupling to dGGG_ G+ kA, — (K, + Kk ;+K)GGG  (le)
effective harmonic oscillators, described by a spectral density. dt

The latter is extracted from an independent quantity, the

absorption and fluorescence spectra of ethidium intercalated inwhere P(t) describes the rate of production Gf by a pump
DNA. The model is applied in section 4 and compared with pulse or by continuous illumination. In the latter caBg) =
experimental daf on yields for cleavage of DNA. The results  Pp so does not depend on time. When a steady-state is used for

are discussed in section 5. the Ay's (dAy/dt = 0), the above scheme becomes
II. Kinetic Scheme and Phenomenological Model for the aG_ , eff eff
Giese Experiment dt - PO (k3 + kd + kh (N))G + (k—3 + k—h(N))GGG

(2a)
In the experiment of Giese et &t.a single guanine is oxidized
following a continuous UV irradiation. The reaction scheme is dGGG_ (ky + kﬁﬁ(N))G —(k 4+ keff(N) + K)GGG (2b)
described in Figure 1, in which the rate constant for hole dt 3 o
injection into a guanine is denoted B After injection, the
hole may be either trapped by an irreversible reaction with water, where the effective hopping rate constarkfg(N) and k‘ifL(N),
leading to the produd®Ps and described by a rate constdgt are obtained (Appendix A) as
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1
KN = kg k‘lkB . 3)
N= 1=t
and

KR N) = K5 T(N)/K (4)

with the equilibrium constariK

0

K= exp(- AGT) ©

Here,AGgGGG denotes the standard free energy difference for
hole transfer from G to GGG, which in principle could depend
on N.

In the experiments of Giese et &.there was a steady state
for G and GGG during the continuous optical excitation
generating the hole injection. The relative yi€df products
Pced/Pgs in the scheme in Figure 1 is then obtained from eq 2b
as

PGGG:k_ﬁGGG:k_ﬁ ks + Ky (N)
Po ki G kik .+ KT(N) + K,

R= (6)

When the trapping rate constakifis small compared to the
back transfer rate constarit, ;3 + k‘if{](N), the above yield
reduces to Ky/kq)/K, assumingks = Kk-s. It then becomes
distance-independent KGOG,GGG and kykq) do not depend on
distance. Such a behavior can be identified by first noting the
relative yieldsR for the smaller bridge lengthsl. The back

transfer rate constakt ; decreases exponentially withbecause

Renger and Marcus

PR T T T T T T T
2+ -

) -

& . e Experiment

§ = x=30

a --x=10
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Figure 2. Yields R = Pgsd/Pg calculated from eq 8 foN > 3 for
different values<in comparison to experimental vallt’s he parameter

a in eq 8 has been chosen to give agreement with the experimental
yield for N = 5.

interpretation of the single experimental valueNat= 16 is
necessary. Experimental data in the raNge 9—15 would be
helpful, as would similar experiments in other laboratories
covering the wide range ®. Measurements of other products
of the reaction of the G and of the GGG with water would

be also particularly desirable (only 10% of the total products
are measured)In any event, values > 1 mean that the hopping
inside the bridge is faster than hopping from the bridge to G or
than hopping from the bridge to GGG or than both, for example,
as seen from the definition of in eq 9. We consider next
variable-range hopping as a mechanism for explaining the results
in Figure 2. We return to possible other origins of tkis> 1
behavior in the Discussion section.

[ll. Theory

superexchange dominates the rate at short distances, and the A pearest-neighbor tight-binding Hamiltonrused in the

trapping ratek; is expected to be relative insensitive Nb In
the experiment of Giese et &f,the rate was not distance-
independent at short bridge lengths, so the trappingkatan

following includes the local coupling of electrons and vibrations.
The Hamiltonian is expressed in terms of the local hole states,
liC] as a basis, where the indexlenotes the site at which the

be assumed to be larger than the back transfer rate (:onstanthole resides:

ks + k'ifL(N), rather than smaller. The relative yieRlin this
case becomes

kg +KE(N)
Rk

We consider next the hopping regime of the transfer, which
dominates the transfer rate fdr> 3 in the experiment of Giese
et al?® In this case, the superexchange rate containt eq 7
can be approximately neglected, and the relative yigld
becomes

)

_ a .
R=g—717% V>3 (8)
where
a= (kelk) (/K1) X=kg/k s Tkgl, — (9)

A test of eq 8 is given in Figure 2. A fit to the datalbt=
5 shows how the curve dR(N) vs N satisfies the data for
different values ok. It is seen thak = 5 gives agreement for
intermediate values dfl but fails forN = 16, whereax = 30
describes the experimental yield fok = 5 andN = 16 but

H= % EQNIT + 3V, QH(Im + 1 +
_ Ao, ) 2
li + 1) + ZT(QE + P (10)

E; is the local energy of the hole state at sitand V11 is
V)i + 10 whereV is an interaction potential. The nuclear
environment is described by a set of harmonic oscillators,
Thue, denoting the kinetic energy of the nuclei (e.g., ref 3.
and Pz are dimensionless nuclear coordinates and mo-
menta related to the spatial coordinatgsand their conjugate
momentap; via Qz = Qzy/2u:w/h and Pz = pgy/2/(uzw:h).
The mass and frequency for tigéh oscillator are denoted by
ue and wg, respectively. The electronic energiEs as well

as the interaction¥,;;1, depend on the nuclear coordinates
{Q}. The latter are then related vigs = Cg + Cz andP; =

i(Cg — C¢) to creation and annihilation operator of vibrational
guantas®

The energies and couplings are expanded around the equi-
librium position of nuclei, defined here as the configuration of

deviates for the intermediate bridge lengths. Given the smallnessnuclei in the absence of a charge carrier. An expansion of up

of the experimental values fdd > 3, some caution in the

to first-order inQ; yields
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coupling to different local vibrational modes and a different
degree of electronic delocalization.

A. Rate of Hole Transfer Between Extended Electronic
States.A statistical operato¥\(t) is introduced and expanded
with respect to the basi®Odefined in the previous section.
The occupation probabilitPy of the stateMUis given as

Vi1 ({Qh) =~ \/|(?2|’1 + ZAVi,Hl(E)QE (11)

The delocalized electronic stat@d 0= ¥;c*|iJare defined
with respect to the equilibrium position of nuclei in the lowest Pu(t) = trvib{w(t)|M[mM|} = trvib{WMM(t)} (19)
electronic state. The Schiimger equation is solved,

and the trace is over the vibrational degrees of freedom. A
perturbation theory second order in the couphfigy between

different extended states M and N

Vi = Zhwggg(M,N)Qg (20)

Ho M= &y, IMO (12)
where the Hamiltoniarg is
Ho= S EXiI + S V% (I + 1) + |i + 1) (13)
| 1

is used in Appendix B to derive a master equation for the

In the proposed eigenstate representation, the Hamiltonian e ; .
10 becomes qpopulatlonsPM(t).
d
H= g(ﬁwmmw + %ZhwggE(M,N)QgM[ﬂm + g MO = ~kuPu(®) + ky-nPr() (21)

hwg ) 5 where the rate constakf;—y is
ZT(Q@ + Pg) (14)

Ky—n = %f:o dt tryin{ UIA(t)vMNUN(t)vNMWeq(M)}
where the coupling constagi(M,N) is given in terms of the h (22)
modulation of electronic energieAEi(£), and intersite coup-
lings, AVi;11(&), and the eigencoefficients{, of extended
states

Thehwwy in €q 22 denotes an energy difference between two
vibrationally relaxed delocalized electronic states (eq 17)

~ el
Om ON

S AE(E MM
h(/)é-gé:(MyN) ZAEI(E)CI C| + DN —T (23)

(M) ~(N) (M) ~(N)
AViin(S)(@T e +ana™) (15) We((M) is the equilibrium statistical operator of the vibrations
Next, the potential energy surfaces (PES) for the extended N the Mth PES, antll(t) is the time-evolution operator of the
electronic states are constructed by first rewriting the Hamil- Mth PES
tonian in eq 14 as

Weq(M) — e_Hvib(M)/(kT) (24)
hw
5 .
H= g St ZT((QE +2g:(M,M))? + P.2)[IMOM | + U, () = & Has00on (25)
< with
% Zhwggg(MaN)Qg|Mmm| (16)
hw
5

with the PES minimum at
=% — Au 17
where

Ay = Zhwgggz(M,M) (18)

is the solvation energy of the Mth extended electronic state. (kT)) in eq 22, a substitution, which corresponds to an

Hyip(M) = ZT((Qg +29:(M,M))*+P.>)  (26)
The rate constarky—n in eq 22 obeys detailed balance,

kMﬂN = dom/(KT) (27)
kN*M

(This relation can be obtained by substitutingy —t — (ih/

Until now, both descriptions, the one using local states in egs interchange of the symbols M and N.)

10 and 11 and the one in eq 16, are completely equivalent.
However, when rate constants are calculated in the following a in eq 22 can be calculated without further approximation. The

Because harmonic PES are assumed, the rate cokgtafqt

critical assumption will be that the nuclei are initially relaxed new result, obtained in Appendix B, is

either in potential energy surfaces of extended st@egor in

that of local statefil] We consider first the case that the initial .
relaxation occurs into delocalized electronic states. That is, for Ku—n =

© ‘ A 2
- e el o

a transfer between two different delocalized states M and N, it

is assumed that before the transfer occurs the initial extended

electronic state M is vibrationally relaxed. The equilibrium

position of nuclei for the two states is different because of the where the time-dependent functions

FMN(T)] (28)
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dun(® = Y (1™ = 171600 (29)

Gun(® = Y ()’e™ = ()’c)gu®)  (30)

Fun® =Y 1171 () (31)
|
were introduced with

o) = [ do €7 (1 + n(@))0"(Aw) — I-0)) (32)

The preceding function contains the mean numbfes) of
vibrational quanta of energyiw, at temperaturd,

(exp{hAw/(kT)} — 1)t (33)

and a spectral density(w),

AE(8))?
J(w) = Z

W

n(w) =

O(w — wy) (34)

characterizing the fluctuations of local hole energies. The same
spectral density will be assumed for all sites, and the correlation
between fluctuations at different sites and any fluctuations of
electronic couplings will be neglected. The time-independent

part in the integrand in eq 28w, is

fan = S U + (€)ME,  (35)

where a reorganization energy is introduced a¥

E, = [do ho(w) (36)

The solvation reorganization energy of extended state M in
eq 18, using the above approximations, then becomes

Iw=ELy" with L~ =Z|CM“)|4 (37)
I

whereLy 1 is the so-called inverse participation ré&fithat is

a measure for the delocalization of state M. It can vary between

Renger and Marcus

AE
0:0) —T(f) (39)

using the AE(§) in eq 11. The energieg], namely, the
energies of the localized states, are

BE=E— Z”’twg(t.llg(i))2 (40)

The rate constarki—; for hole transfer between states of the
system where the hole is localized at sitesdj then follows
as

|]|

e tr{ U (U (OWedD)}  (41)

wherew; = (Ef — E)/f is given in terms of the energies in eq
40 andU;(t) is the time-evolution operator of the vibrations in
the PES of the state with a localized hole at si(ghat PES is
called theith PES in the following).

Uj(t) = g "0 (42)

where

hwg
H, (i) = ZT((Qg +29:())* + P (43)

The equilibrium statistical operator of the vibrations in ttre
PES isWe((i):

Weq(i) — e_Hvib(i)/(kT) (44)

The rate constark—; in eq 41 for transfer between localized
states can be calculated in a manner similar to that used for the
delocalized states in Appendix B. The calculation is simplified
by the fact that the coupling between different states does not
depend on the coordinates, in contrast with Appendix B. The
well-known result for nonadiabatic electron transfer between
localized states #3:35-37

i J| Iw” ed)(t) ¢(0) (45)

1 for localized states ard~! for completely delocalized states,
whereN is the number of coupled sites. Herein, the standard
result for the rate constant between localized states will be given
first, and in the Discussion section, an interpretation of the
present result in eqs 287 is given in terms of a comparison
with the rate constant for localized states.

B. Rate of Hole Transfer between Local Electronic States.
To recover from the Hamiltonian in eq 10, the usual expression With the spectral density
for the nonadiabatic electron transfer between localized states

where the time-dependent function is

o) = f do (1 + n(w))(J; (@) — J(~)) (46)

this Hamiltonian is rewritten as

"2

, hao, 2 2l
E+ ZT((Qg + 29:(1))" + PO +

Jij(0) = Z(gg(i) = g:0))*(0 — o) (47)

which is zero for negative. When the fluctuations of energies
at sitesi andj are not correlated, this spectral density becomes

Izvuﬂ(umﬂ + 1)+ i + 101 (38) 3(0) =

where eq 11 was used for the modulation of electronic energieswhere the local spectral density, given in eq 34, was also
and where the modulation of the couplings was neglected asassumed here. The(t) in eq 46 then equals¢@(t) in eq 32.
before, that is,\Vj+1 = V(.+1 The modulation of energies, The well-known classical limit of the rate constant in eq 45

I
AE;(&), is contained in the coupling constagy(i) at sitei, is33:35.36

3(0) + I(w) = 2)(w) (48)
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27 |Vi,j|2

N

where the reorganization energdy?® is related to the local
reorganization energy in eq 36 by

A=2E, (50)

e (A—fwij)?/(47KT) ( 49) 1r Fluorescence Absorption

=

Intensity [a.u.]

and the standard free energy of the reactioN@ = —hw.

IV. Numerical Calculation of Hole Transfer

A. Estimate of the Spectral Density from Optical Spectra o1.5 2 25 3
and Normal-Mode Analysis.In the following, a rough estimate Energy [eV]
of the spectral density(w) in eq 34 is obtained from the  Figure 3. Room-temperature absorption and fluorescence spectra of
calculation of absorption and fluorescence spectra of a dye ethidium bromide intercalated in DNA. Circles are the experimental
molecule intercalated in DNA. Although thiéw) in eq 34 isa  datal* and lines show the calculations.
spectral density for charge transfer and @t@) extracted in
the following is an optical spectral density, the latter is an
approximation for the former as discussed in detail in the
Discussion section.

The optical line shapes of absorptidd,, and fluorescence,
D,, then are related to the spectral density in eq 34 according

transfer between two localized states then is obtained from eq
50 asA = 0.48 eV.

The deviations between the theoretical and experimental
absorption curves in the blue wing of the spectrum can be
attributed to the vibrational frequencies being different for the

1033.37,39 ground and excited state or to higher excited electronic states.
The latter are seen in the absorption spectrum but not in

—o(0 fluorescence (because of relaxation to the lowest excited state).

Dy () ~ € *OQ2r0(w — w,) + ( )

There is support for the latter proposition from early quantum
SO, degtomedigehld — 13y (51) chemical studie€?

B. Calculation of Experimental Cleavage YieldsAssuming
where the functionpo(t) in eq 32 was used anklkos is the steady-state conditions as before, the following set of equations
energy difference between the minima of the potential energy is next solved for the populations of extended states
surfaces of the ground and excited state of the dye. As seen in
eq 34, the spectral density is given as a combination of coupling Z(kMQN +KMPy, — ZKNHMPN =Py (56)
factors and density of states. The density of states

dw) =S 6 — w) (52)  WhereP(" describes the rate of production of M by the local
Z ¢ hole injectionPy (production of G),

of a DNA fragment with intercalated ethidium was calculated PM = (c)2p, (57)
from a normal-mode analysis in ref 40. For the local spectral

densityJ(w), the following ansatz is chosen: The trapping rate constak” in eq 56 for a given extended
state M includes the contributions from the G and the GGG

J@) = Se(w)d(@) (53) state to this extended state
with
ki" = {(c&") + (&2 kg (58)
() = = g7l (54)
W, where we assumelly = k; for simplicity, that is, the same
local trapping rate at G and GGG. There is at present no direct
and the well-known HuangRhys factor information on the trapping rates available in the literature. An
analysis of hole-hopping data on a similar system in ref 21 gave
S= fdw J() (55) a ratio ky/ky = 1.6. Considering the uncertainties of other

parameters, this small difference in trapping rates, if real, does
A frequencyw. was introduced in eq 54 to take cognizance of not need to be taken into account in our present approximate
the fact that the high-frequency normal modes are typically more treatment.
localized than the low-frequency modes and therefore only few  The measured yieldR, is then obtained from the resulting
of the former belong to the local site where the ethidium is occupation probabilitiesPy, and eigencoefficients™
intercalated and thus couple to its optical transition. In addition,

k() takes into account the difference in coupling constants for (C(M) G)Zp O

the different normal modes. The selected functional form is a Peocdis DZ CCET T M

major simplification in that it limits the number of adjustable R= = (59)
parameters to two, namely, the amplitude of the coupliagd Psldis (c )Zp I

the cutoff frequency.. The absorption and fluorescence spectra % G/ 7 Mdis

obtained forS= 8 andhw, = 300 cnT! are compared in Figure

3 to the experimental valué$.From the spectral density so- where [..[4is denotes an average over disorder. The latter is
obtained, a local reorganization energy = 0.24 eV is described as a static fluctuation in site energies. A Gaussian
calculated from eq 36. The reorganization enefgfor hole distribution function of fwhmAy;s is assumed independent of
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the site index, and the energies at different sites are assumed to K] B B B L L L L L
vary in an uncorrelated manner. The same mean site egrgy
is assumed for all A’s. From the spectral dendify) obtained
as described eatrlier, the functiopgt) were calculated according
to eq 32. Those functions were then used to calculate the
functionsFun(t), ¢mn(t), andGun(t), eqs 29-31, which enter
the rate constant expression in eq 28. Each disorder average in
eq 59 was performed numerically using a Monte Carlo
algorithm. The numerical procedure used to obtain the relative
yield consists of the following steps: (i) random generation of
site energies from Gaussian distribution functions that are
centered around the mean site ener@igsEc, andEcgg, (i)
calculation of extended states by diagonalizafiofiij) calcula-
tion of rate constants, (iv) solution of linear equations for the
population of extended states and calculation of populations for
G and GGG sites, (v) repetition of stepsiv for about 10 000
configurations of disorder and calculation of average population | T A A R BT S
of G and GGG sites and the relative yidRl 2 468 %\? 12 14 16
In addition to the d_elocallzed St{ite_s Cha_nnel, a hopping Figure 4. Calculation of relative yields of DNA strand cleavage in
channel through localized states is investigated. When a dependence on bridge lengthfor the electronic couplings of Troisi
localized state description is used, the master equations are et al# Circles are the experimental values of Giese & @he upper
and lower curves are obtained for the two channels, involving partly
(Kijeq T Koy + (6LGGG+ 5i,e)kd)Pi — Kip1—iPip1 — delocalized and localized states, respectively. The calculations of solid
k_, P, =0 oP, (60) lines include static disorder, whereas the dashed curves were obtained
—1=iti-l G0 without taking into account static disorder.

—

Log(Pi6/Pg)
(=]

0
—

localized states

2F

where the rate constarkts.i+1 are calculated from eq 49 using
the same parameters as in the extended states calculations. T
yield R averaged over disorder is given by

htge couplings of ref 45; we used 0.165 eV for the intrastrand
coupling between A’s and 0.03 eV for the interstrand coupling
between A and G and A and GGG. The second set of

Peodd: couplingg4is investigated later.
R= B = (61) For item iv, the trapping rat&y, a value of~1C® s™! was
aldis estimated earlier from an analysis of a relative yield of hole

where the disorder average was calculated numerically by atrapping measured on a similar systéhfrrom the calculations,
Monte Carlo algorithm as before. In our calculations, the two We obtain 7x 10°s™* for ky. This value does not influence the
thermally activated hopping rates, via localized and delocalized ;hape of the yield versus distance plot; as long as the trapping
states, are treated as independent channels. In this case, thi§ fast compared to the back transfer from GGG to G, it just
overall yield is just the sum of the two individual yields. Shifts the whole curve along the yield axis.
However, as will be shown below, it is possible that one channel  Item ii, the energy gap\Exg, was extracted from the yield,
dominates the yield. Our primary focus is on the thermally measured in the present experiment for short bridge lengths
activated hopping part of the signal observedNor 3. In this where superexchange dominates: An energy gapiic =
case, both channels are related by an equilibrium constant and?.27 €V gave the observed slope of the yield versus distance
the dominant channel is the one for which the product of thermal curve in this region and also gave a transition between
activation and intrachannel transfer between the respectivesuperexchange and hopping at abbut= 3, as observed in
(localized or delocalized) states is larger. experiment. This value fohExg lies between the difference in

Besides the spectral densif{), estimated above, a number ionization potentials for A and G measured in the gas pHase
of other quantities are needed for the calculations: (i) the (0.2 €V) and in acetonitrite soluti¢h(0.47 eV).
electronic couplingsVi,+1, (i and iii) the energy gapsAEac The question of the effect of disordekys, in site energies
andAEg geg Of the local hole states, (iv) the trapping ratg, arises. Without use of disorder but with use of extended states,
and (v) the amount of disorder described by the width (fwhm), a qualitative fit to the data was obtained (upper part of Figure
Agis, Of the Gaussian distribution function assumed for the local 4). However, the yield for long bridges shows some nonmono-
hole energies. The quantities i and iv were estimated from tonical behavior that is not observed in the experiment. This
independent theoretical calculatiols'*45an upper limit for behavior is averaged out in the calculation that takes into account
guantity v was obtained from an independent calculaifom, static disorder; & ys = 0.08 eV (fwhm of Gaussian distribution
lower value for quantity iii was obtained from the present function) was used (Figure 4). We compare this result later with
calculation, and quantity ii was fitted to the present experiment. one by Yu and Sorf§ obtained from the temperature depen-
The details are as follows: dence of conduction.

Two different sets of electronic matrix elements are reported  The yields obtained for a localized states model shown in
in the literature**45In ref 45, the coupling between neighboring the lower part of Figure 4 are smaller by-2 orders of
A’s was calculated to range between 0.125 and 0.198¢br magnitude than the delocalized states yields. Obviously, the
the interstrand coupling between A and G and A and GGG, 1 delocalized states hopping channel dominates the transfer for
order of magnitude smaller couplings ranging between 0.011 this set of electronic coupling$.It is seen also that disorder
and 0.076 eV were obtainéflIn contrast to these results, a 1  decreases the localized states yield, an effect discussed in detail
order of magnitude smaller coupling between A’s was obtained later. In addition, the localized states yield shows a stronger
in ref 44; the intrastrand AG and A-GGG couplings are distance dependence for long bridge lengths in disagreement
similar in both references. The calculations in Figure 4 refer to with the experimental data.
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o LI B e effective hopping rate in eq 3 between a donor and an acceptor.
I 0554 — e dd The Iatter are connectgd by a bridge with hole orbital energies
2r . "\"J . dnatogev in the bridge being higher than those of the donor and the
I L o del, A0 acceptor. The distance dependence obtained for the rate allows
gv L5F 1 & NG one to estimate a certain ratio of rate constants of the individual
§ B _ § OF § “",ff - transfer processes by comparison with experiment. A density
& 1m0 Lo I ) L matrix study?® on activated conduction in molecular junctions
S 0 ‘~ T 2 o 1 gave an ¢; + a,N)~! dependence of the numerically obtained
0.5 3¢ o | L rate, where the constants and o, depend on the molecular
T N 1 05 M P properties and on the strength of electron-vibrational coupling.
or T ST The same distance dependence of the effective rate is obtained
R R TS TRVETI 2.":.'%'5';'1'0'1'2'111\'1'6'. here, and the two constants are related to the individual rate
N N constants of the present phenomenological modeta =

Figure 5. Calculation of relative yields of DNA strand cleavage for k_; + ky — ks anda, ™! = kg. In a recent papét on thermally
the electronic couplings of Voityuk et & Circles are the experimental  induced hopping, aiN=2 dependence of the effective transfer

values of Giese et &f. The solid line in the left part is the logarithm (4t was inferred in the limit oe/k» < 1. The present result
of the sum of the yields obtained for localized states and those obtained Oks/kz : b

. ; N 2 ;
for delocalized states. The separate yields are shown in the left part as3 v >’ '_”s;fadv a\(— 1 + kg/k-1)"" distance dependence in
dashed (for delocalized states channel) and dotted (localized statesfhiS limit.

lines. A static disorder algis = 0.08 eV was assumed. The latter two The more general theory, more general in the sense of being
curves are shown again in the right part and are compared there withmore microscopic, that was used to obtain a rate constant in eq

calculations neglecting disorder. 28 for hole transfer between partly delocalized states is related

. . . i _ 54
Next, we consider the second set of electronic couplings from © @n earlier theory due to Mukar&;l and co-workerE:>‘They

the recent literatur# which results in the calculated yields describe charge trann%fge;lln DNAand exciton transfer in
shown in Figure 5. Because of the smaller electronic couplings Photosynthetic systentS>* The present theory is simpler

in the bridge, now both localized and delocalized states because it assumes fast vibrational relaxation. The latter
contribute to the yield. An electronic matrix element of 0.03 assumption leads to the reduction of the entire set of equations
eV for hole transfer between A’s was calculated by an ab initio [OF the dynamic variables to master equations. However, the
method in ref 44. A similar value (0.02 eV) was obtaitfefdr part of the earlier theo# that describes the transfer between
the interstrand coupling of G and A. For simplicity, we used different electronic states was treated in the Markov approxima-

the same coupliny; 1 = 0.03 eV between all bases. For item tion, and hence, a similar expression for the rate constant is
iv, the trapping raté<d we used 1.3« 108 s-L. which is close obtained. The results for the rate constants nevertheless at first

to the~108 s-I estimated earlie}8 glance appear to be quite different from the present ones because

For item ii, the energy gapEac was extracted from the yield of tk_\e use of.the Brownian oscillator approach for th_e coupling
as before; a\Exs = 0.14 e\*° gave the observed slope of the to V|brat|ons in ref 14. In the present paper, a harmonic o§C|IIat0r
yield versus distance curve in this region and also gave a_approach is used. The equality of the two rate constants is shown
transition between superexchange and hopping at abeus, in Appendix C.
as observed in experiment. Without use of disorder but with ~ The introduction of the PES of the extended electronic states
use of extended states, a fit to the data was not obtained. To fittakes into account the dependence of the configuration of nuclei
the experiment, Aqs = 0.08 eV (fwhm of Gaussian distribution ~ on the delocalization of the electronic state. It is seen in the
function) was used (Figure 5) as before in Figure 4. The tran- following section that, as expected, electronic delocalization
sition between the tunneling and the hopping regime is some- leads to smaller reorganization energies of charge transfer.
what smootherN = 4, ..., 8) in the absence of disorder, while Disorder in energies tends to localize the electronic states. Here,
in the presence of disorder a sharp transition is obtainéd at localization due to static disorder was taken into account and
= 3 as apparently observed in the experiment. By comparing dynamic localization, the so-called self-trapphig? was ne-
the solid with the dashed line and the doashed with the  glected.
dotted line in the right part of Figure 5, one sees that disorder  Self-trapping of electronic states could be included in the
in site energies decreases the localized states hopping rate antheory by a higher-order perturbation theory in the off-diagonal
enhances the delocalized states hopping, a result discussed latepart of the coupling of extended states to the vibrations. The

In the calculations in Figures 4 and 5, the energetic difference use of second-order perturbation theory for the off-diagonal parts
AEg ces= 0.2 eV was also assumé&lHowever, the calculated  of the electron-vibrational coupling relies on the assumption
yield does not depend oREg ggsas long as this energy gap is  that the off-diagonal parg:(M,N), is smaller than the diagonal
large enough to prevent the back transfer (GGG)G — GGG part,g:(M,M). The g«(M,M) is taken into account exactly. This
+ G* from being faster than the trapping (rate constat relation is a result of static disorder. For completely localized
For smaller energy gaps, the calculated yields for short bridgesstates, thg:(M,N) = ¥ic™ ¢™ge(i) would be zero for M= N
become independent of distance, in disagreement with thepecause one of the two coefficient®” or ¢, would vanish
experimental observatioli. As discussed earlier, the rapid for M = N. Instead of taking into account the self-trapping
transfer rate constarksce-c obtained in the calculation for  explicitly, we consider two competing channels of thermally
small energy gapa\Ee,cce allows the system to equilibrate  activated hopping through partly delocalized states and through

before the trapping can occur and leads to this discrepancy for|gcalized states as is discussed in detail in section 5.3.

small AEs cee In the present formulation, we have not included a possible

dependence of the reorganization enetgy distance between

hopping site$’ We expect that a distance dependence will
A. Theoretical Aspects.We consider first a phenomenologi- mainly have an influence on the yield for short bridge lengths

cal nearest-neighbor hopping model, and its use to obtain anwhere tunneling dominates. However, our focus here is on the

V. Discussion



8412 J. Phys. Chem. A, Vol. 107, No. 41, 2003

thermally activated hopping observed for longer bridges. In the
case of nearest-neighbor hopping, there is just a sihgénd

Renger and Marcus

AMN) = T3 — (c™)3%M), a = 2unwoge?Asr-
(M,N)/A, andb = w902y i1c™ |22 becauséh+; = (a + b),

in the case of variable-range hopping, it can be expected thata ;, = (b — a), andA; = A1(M,N)2we2go™.

an effectived can be introduced that takes into account an
average over different distances.

B. Comparison of Rate Constants for Extended and
Localized StatesThe three major differences between the rate

With the use of the same single local vibrational mode
approximation and a similar expansion, the rate condtant
between local states in eq 45 is

constants for transfer between extended and localized states 2

occur in (i) the free energy difference, (ii) the different

displacement of free energy curves, and (iii) the presence of

inelastic tunneling processes. The free energy differgnogy,

between the extended states M and N in eq 23, using eqs 17

and 18, is

Aogy = én — S HELy P =Ly, (62)

Itis seen to depend on the difference in the inverse participation

ratio (the delocalization) of extended states M and N. If the
states M and N are localized at siteandj, respectively, then
houn = hojy usingly,” = Lyt = 1.

To illustrate the points ii and iii, it is assumed, for simplicity,
that every site couples to only one local vibrational mode with
frequencywo. The spectral density in eq 34 in this case reduces
to

) = go'd( — w) (63)
where gy = AE/(hwo), and the functionp(t) in eq 32 now
becomes

o) = o€ (1 + n(wy) + €”n(wy)  (64)

The function éw® in eq 28 then can be expanded as

o o (A g 2)k+| '
e¢MN(1) — ZOZ% e*l(k*|)w0‘f(1 + n(a)o))k(n(wo))l
S (65)
with
A = Y (1™ = 16M? (66)

V|

k= ?k;opi(l Y=2)Pi(ky=2)0(w;; — wo(k = 1)) (70)

The o-functions on the rhs of eqs 67 and 70 describe energy
conservation during the charge transfer. The transfer occurs
between thdth vibrational state of the initial electronic state
and thekth vibrational state of the final electronic state.

The two Poisson distributions, eqs 68 and 69, determine the
contribution of the vibrational statésandl to the transfer. The
maxima of those distributions occur late yge?n(we) andk ~
y&2(1 + n(wo)). For example, if the two free energy surfaces
are strongly displaced (i.eyg? is large), those distribution
functions are large for large numbétsand| because a large
number of vibrational quanta are necessary for sufficiently strong
vibrational overlap and energy conservation.

The factorPi(l,y=Awn)Ps(k,y=Awmn) in eq 67 depends on the
functiony = Awn in eq 66. The latter depends on the de-
localization of electronic states; it varies between 0 for com-
pletely delocalized electronic states (the probabilit1i(§¥)|2
and|c™|2 to find a local hole statéin the extended states M
and N are equal) and 2 for completely localized states (a local
hole state will contribute to either extended state M or extended
state N). In the latter case, the fac®@(l,y=2)Pi(k,y=2) in eq
70 for localized electronic states is recovered. The Poisson
distributions for the localized states peak at higher valuds of
and | than the distribution functions for extended states,
reflecting the fact that a delocalization of electronic states leads
effectively to a smaller horizontal displacement of the free
energy surfaces of the different states and hence to a smaller
reorganization energy of the reaction.

The third difference between eqs 67 and 70 is the appearance
of non-Condon terms in the extended state rate constant. Those
terms, which appear in eq 67 after the coefficiefits and A,

The extended state rate constant in eq 28 then can be written asesult from the coordinate dependence of the coupling (eq 16)

Ky—n = Z Pi(Ly=Aun)Pi(ky=Apy) x
K=o

d (;LMN/h)Z = 2A(1 + n(w))N(wg)} (wyy — ook — 1)) +
A1+ n(we)d(wyy — wg(k+1—1)) +
A N(we)d(wyy — wo(k =1 = 1)) +
AL+ (0 d(wry — ook +2 1) +
N(we)*d(wyy — wok =1 = 2))}) (67)

with the two Poisson distributions

yaon(wo) [yg'n(wo)l

Py =¢ . (68)

and

. oo [V (L + n(wg))]
P.(ky) = g Yoo G 0

(69)

The constant®?o, A;, and A, in eq 67 are obtained from

between the extended states M and N and describe an inelastic
tunneling between the initial and final state, that is, during the
transfer of the electron (or hole) vibrational quanta are absorbed
and emitted by the electron (or hole). The term after contains

the emission of one quantum, and thg; term contains the
absorption of one quantum. The two vibrational quanta inelastic
tunneling processes are described by Ahgerms.

C. Localized States versus Partly Delocalized States
Hopping: Which Channel Dominates?In the calculation, we
distinguish between two channels of thermally activated hop-
ping, via localized and via partially delocalized states.

Depending on the electronic couplings and reorganization
energies of the states, it will be easier for the hole, initially
localized at the donor G, to reach a localized or a partly
delocalized state in the bridge. The overall efficiency of a
channel then depends on the probability to reach a certain state
and on the transfer efficiency between the states (localized or
delocalized) within one channel. In the limit where the electronic
coupling is comparable to or larger than the reorganization
energy of a local hole state, the splitting between electronic
eigenstates of the bridge will determine the gap between donor
and bridge. In addition, electronic delocalization decreases the
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nuclear reorganization energy of the states and thus leads toaccount. Furthermore, two different sets of ab initio electronic
fast intrabridge rates. Those two effects are responsible for acouplings were considered. Using the couplings obtained by
faster transfer through the delocalized states channel. Troisi and Orlandf> we obtain the yields in Figure 4, which

If, on the other hand, the reorganization energy of localized show a clear preference of the delocalized states hopping
states is larger than the electronic coupling, the equilibrium channel. The splitting between electronic bridge states brings
constant is shifted in favor of thermal activation of the localized some of the bridge states to low enough energies so that thermal
states. This effect can overcompensate the decrease in transfeictivation of the hole at the donor G to those states is easier
efficiency between localized states caused by the larger reor-than thermal activation leading to a localized bridge state. The
ganization energy, and the localized states channel will domi- flat distance dependence results from the efficient transfer
nate. between the partly delocalized states due to a small reorganiza-

An interesting effect is observed in the presence of static tion energy as discussed above and because the splitting between
disorder. The latter barely changes the transfer efficiency in the the bridge states is larger for longer bridge lengths thus
first limit of strong electronic coupling, but it strongly decreases decreasing the energy gap between donor and bridge even
the transfer efficiency via localized states hopping. This decreasefurther and so promoting thermal activation. The nonmonotoni-
is a result of local barriers created by the disorder in the bridge. cal behavior obtained in the absence of disorder is due to the
Because the localized states hopping is a nearest-neighbosymmetry of the electronic states in the bridge and is washed
hopping, such barriers in the bridge will be critical bottlenecks out by the disorder. As discussed before, the variable-range
for the overall transfer rate, and thus, the efficiency of the hopping mechanism leads to a relative robustness of the overall
transfer goes down with increasing disorder. In the case of partly hopping rate against static disordr.
delocalized states, the hole (electron) can tunnel through such The second set of electronic couplings obtained by Voityuk
local barriers in the bridge, a phenomenon that is termed et al**leads to a more complicated situation, as shown in Figure
variable-range hopping.It was used recently by Yu and Sdfig 5 for the present static disorder. Both channels, the one with
to explain the temperature dependence of conductivity mea-localized and the one involving partly delocalized bridge states,
sured? in A-phage DNA. Because of this phenomenon, the contribute to the observed yield. As before, the delocalized states
transfer efficiency between extended states does not depend akopping shows a weaker distance dependence than the localized
critically as the one for the localized states on the disorder. states hopping. An interesting difference with respect to the
Hence in a situation where the localized states channel dominategalculations in Figure 4 concerns the disorder dependence of
the thermally activated transfer, an increase in disorder in bridgethe delocalized states hopping. It increases with increasing
energies will change the branching ratio of the two channels in disorder, as shown in the right part of Figure 5, whereas it did
favor of the delocalized states channel. not depend much on distance in the upper part of Figure 4. The

Finally, we note that the present formulation in terms of two difference between the two results is due to the different
channels is an approximation of the real situation where just electronic couplings. In Figure 4, the electronic coupling is
one channel exists that contains partly delocalized states butstrong enough to determine the energy gap between the donor
takes into account a dynamic localization of the states by so- and the bridge. The electronic coupling is an order of magnitude
called self-trapping. A more exact but more complicated smaller in Figure 5, and in this case, the energy gap between
formulation (involving the solution of a nonlinear S¢dimger the hole donor G and the bridge is a function of disorder.
equation) in terms of solitary electronic states can be found in Disorder in the bridge, which localizes the states, brings some
a series of papers by Fischer and co-workers (ref 55 andbridge energies closer to the energy of the donor state, as
references therein). discussed below, and thus thermal activation becomes more

D. Explanation of the Flat Distance Dependence of the likely via these states, and the relative yield increases with
Hole Transfer Rate. The principal finding in that article is that ~ disorder. This effect of decreasing the energy gap between G
the delocalization provides at least one explanation of the and the bridge of A’s by disorder is explained by the dependence
reported flat distance dependence of the relative yield found of the reorganization energies of the extended states on the
by Giese et at® When one uses a phenomenological nearest- disorder, as discussed in detail in Appendix D.
neighbor hopping model, the ratio of rate constaki#k—; or The question may arise: Is there any set of parameters in
ko/k-1, appearing in eq 8 is large. An explanation of this result the nearest-neighbor hopping model that gives agreement with
is obtained within the present framework by interpretiagas the reported experiment? This question can be answered by
an effectve hopping rate constant, the hole transfer involving  returning to the phenomenological hopping model studied in
partly delocalized states in the bridge. Hence, the hole will not section 2 that yielded agreement for large values sfkg/k_;
hop between neighboring bases but between larger regions. Int kg/k, where kg is the hopping rate constant between
addition, this “length” of the hole leads typically to a smaller neighboring bridge sites arkl; (k) is the rate constant for
reorganization energy for transfer in the bridge than for transfer transfer between the first (last) bridge site and the donor
from a local donor or acceptor state into the bridge. This (acceptor). In Appendix E, several possible reasons for a large
difference in reorganization energies in turn also leads to fasterx are discussed, but we judge them to be improbab|e_ Re@nﬂy’
intrabridge transfer. we became aware of an alternative explanation in terms of

In the comparison between theory and experiment in Figures |ocalized states that is based on quantum chemical calcul&ions
4 and 5, for short N < 3) bridges, the superexchange of hole energies of base pair triplets. It involves local barriers
mechanism dominates, so an exponential distance dependencereated at the first and last A in the bridge. Such barriers would
of the yield results, whereas fdr > 3, the hole transfer involves  be due to the different nearest-neighbor bases seen by those
thermally populated bridge states. This interpretation of the terminal A’s of the bridge. Applying the triplet rule of Voityuk
behavior is now well-knowa?4 etal.’%a—AG°® = 234 meV for the hole transfer from the first

In the calculation of the thermally activated hopping that to the second A in the bridge and-eAG® = —127 meV for
occurs at bridge lengthsl > 3, two different channels, via  the transfer between th&l(— 1)th and theNth A in the bridge
localized states and via delocalized states, have been taken int@re obtained. Because the latter value is smaller than zero, the
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corresponding rate can be assumed to be slower than the ratethe thermally activated hopping via localized states and promotes
between the other A’s in the bridge (which havAG° = 0 or the hopping via partly delocalized states because of variable-
234 meV). Therefore the hole transfer between tie-(1)th range hopping and the disorder dependence of reorganization
and theNth A in the bridge can create a bottleneck of the energies of the extended states.
reaction on the basis of the quantum chemical calculafins.
However, we note that this bottleneck effect will be much  Acknowledgment. One of us (T.R.) acknowledges support
weaker if variable-range hopping is included in the theory of a Lynen Research Fellowship from the Alexander von
because the hole can tunnel through the terminal A’'s. To help Humboldt Foundation and support by the Deutsche Forschungs-
to settle this question, experiments on a DNA duplex in which gemeinschaft (Emmy Noether Grant RE 1610/1-1). Support by
G, Ay, and GGG are placed in oné-6-(A)\-GGG-3 strand the National Science Foundation and the Office of Naval
(instead of having G and A at different strands) would be Research is also acknowledged. We thank C. Treadway and T.
helpful. In this case, if the triplet rufis correct, there are no  Fiebig for providing us the absorption and fluorescence spectra,
bottlenecks at the terminal A’s and the localized state hopping and we thank S. Gosavi for stimulating discussions. It is a
model then predicts a steeper distance dependence, whereas th@easure to acknowledge valuable discussions with A. Okada,
delocalized state hopping model predicts still a flat distance S. Tanaka, and H. Sumi. Further discussions with M. E. Michel-
dependence. Beyerle and S. F. Fischer and a comment by J. Jortner were
E. Discussion of Dynamic and Static DisorderThe disorder ~ also very helpful.
is both dynamic, described by the spectral dend{ty), and ) o ) )
static, described bjgs. The two forms of disorder have their ~ APpendix A: Derivation of the Effective Hopping Rate
origin in the conformational dynamics of DNA and the solution. Constant, K2(N)
The fast fluctuation of the DNA structure leads to a dynamic  |n steady-state approximation for th/’s, eq 1b can be
modulation of local hole energies and is treated by the spectral\yritten as
densityJ(w). This J(w) was extracted here from fluorescence

and absorption line shapes of intercalated ethidium. It is a —k,G

simplification to assume that the modulation of the optical A= A (A1)
transition energy is the same as the fluctuation of a local hole —(kg +k_p) + kB_Z

energy. However, the extractd@v) results in a reorganization A

energy4A = 0.48 eV for hole transfer between two localized

states, which is close to the 0.4 eV estiméfesim time-resolved ~ and forj = 2 to N — 1, the following recursion relation is

measurement$§ of hole transfer between two intercalated obtained from eq 1c

ethidium molecules. Our estimatdd= 0.48 eV is about half

of the reorganization energy obtained in experiments on DNA A

hairpins®® In these hairpins, the hole donor, a stilbene, is E

exposed to the solvent, which may explain at least part of the

larger reorganization energy (see Appendix F). Cho and At

Flemind? investigated how the two types of spectral densities,

those for optical transitions and those for electron transfer, are

related. They concluded that the same functional forri(e A, K K

can be assumed but that the two spectral densities can differ by N (1 + _2)/(1 2 @) (A3)

a scaling factor. We have set this scaling factor to unity on the An-1 ke ks Tk Ay

basis of a comparison of the reorganization energy obtained

with experimental values. (The scaling factor can be expected Equation A2 defines a continued fraction that is terminated by

to depend on the tightness of the pair in the excitation.) the Av/An-1 in eq 73. From these two equations, an explicit
Any dynamics that is slow compared to the charge-transfer formula for Ay-n/An-(n+1) is obtained

process is considered as static disorder and described by a

distribution in site energie® Here, a Gaussian distribution of ~ Ayv-n N — (N — DAJA

width (fwhm).AdiS = 0.08 eV was estimated. This value is AN—(n+l)_ n+1—nAJA_;

smaller, and is expected to be smaller, than the value of 0.15

eV used by Yu and SoAgto explain the temperature depen-  The preceding equation and eq A3 are then used to obtain
dence of conduction measuféih 1-DNA because in the latter

=1 (A2)

2_Aﬁ

From eq 1d, we have

n=0toN—2 (A4)

study an additional change of local energies by a random DNA A, k K.,GGG

sequence had to be considered. =y (N-nN+1-(N-n——F7— (A5
| Ay kg ke Ay

VI. Summary

Introduction of eq A5 fom = 2 into eq Al yields a relation
We summarize the results obtained in the present paper asbetweenA; and Ay, while eq A5 forn = 1 yields a second

follows: An electron (hole) transfer rate constant for vibra- relation. Elimination ofA; yields

tionally induced transitions between extended electronic states

was derived. The rate constant includes the tunneling, as well Kk, kg k., kg
e ; —— —IN-1+—
as the hopping-like, transfer of the electron (hole). An explana Kk, Ky k, ,
tion of the reported flat distance dependence of the relative yield Ay = G+ GGG (AB)
of strand cleavage measured by Giese et al. for long bridges ( N—1+ ﬁ 4 E N—1+ ﬁ + E
> 3) is given. It involves thermally activated transfer between k., k k., k

partly delocalized states of the bridge and disorder. An
interesting effect of disorder found here is that it suppresses From eqs A6 and A5 fon = 1, A; is obtained as
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k k_ 1 e
—l(N - 1+E) Kok =2/ Atk (0 (89)
A = < Glgy ¥ geg (A7)
N_ 148 ke kB N—1+ ﬁ i E where the properti—n(t) = ki, (—1) of the generalized rate
k71 k2 1k eq B7 was used.

To calculate the generalized rate in eq B7, the trace has to
By introducing eq A7 into eq 1a and eq A6 into eq 1le, the be performed over the thermally equilibrated vibrational states
equations 2a and 2b of the text are obtained with the effective of the Mth PES. The PES'’s of statgd Jand [NCare shifted

rate constants given in egs 3 and 4. parabolas. This shift can formally be expressed by a shift
operator®
Appendix B: Derivation of an Expression for the Rate
Constant k- Dy, = exp}y {g:(M,M)(C; — CD)} (B9)
The Liouville-von Neumann equation for the statistical ) )
operator read$ Any operatoiOy that depends on the coordinates of the shifted
PES M is changed usin@Qy = DI,,OODM. In particular, the
d . ) A 1 . N time-evolution operator for the unshifted PES,
Wy = ~loyyWun + —(Hyis(M)Wyy — WynHyin(N)) +
dt ih it _ho,
1 . n A = N
3 Qb = W) (B Yo ex“{ he g QR )]

.o~ . becomes
where the couplingVun, the energy differencéomy, and

vibrational Hamiltonian of the Mth PEB,;,(M) were defined _ i 2 2

in the text in egs 20, 23, and 26, respectively. Un() = exdf (I/h)tzf(hw»fm)(@f +29,(M.M)) +I§i)g
For a perturbation treatment of the couplingn, the (B10)

following interaction representation of the statistical operator Similarly, eq B7 can be written as

is used

VV( () = gowt t (t)WMN(t)U (t) (B2) kMﬁi'ju(t)tZZ Tt 9 t 9 \\(0)
e %trvib{ DMUo(t)DMVMNDNUO(t)DNVNMDMVVf?qDM} -

where the time-evolution operatbhy(t) is given in eq 25. The

jout 2 t 9 bpip. ot tn U T we
equation of motion for the statistical operator in eq B2 is e ﬁtrvib{ UO(t)DMVMNDMDMDNUO(t)DNDMDMVNMDMV\’éq)}

d\?\/" t) = s o WO — WO OV 1) (B3 )
SN0 =25 (L OWRO ~WROVRO) B3 e e of the identiy
with Dw(C: + CHDJ, = C. + Cl — 2g.(M,M)  (B12)
V(1) = €2 U (Vi Un (D) (B4) and of the definition of the coupling¥/un (eq 20), the
DMVMNDI,, in eq B11 then is
Equation B3 leads to a second-order generalized rate equation . A
for the populationPu(t), DyVunDum = Vun — 2K, (B13)
Pu(t) = trvib{WMM(t)} = tr,p{ Whl,?m 0} (B5) where a reorganization energy
namely K = K(M,N) = Zhwggg(M,N)gg(M,M) (B14)

EpM(t) = _Rezﬁ; dr [Ky—n(T)Py(t — 1) — was introduced. Thé&y—n(t) in eq B11 becomes
dt

Ky—m(7)Py(t=7)] (B6)

.o 8K Vi
K-l = & - trvib{ ugm( 2K )
with a generalized rate constant
) Ug()Ug®DynUg() DY (1 - —)V\/")} (B15)
ky—n(t) = '””“th it U OVin Un Ve WaM)} - (B7)

where a new shift operatoByy, was introduced

Whenky—n(t) decays rapidly on the time scale of the dissipative . "
dynamics of the occupation probabilitid®,(t) andPy(t) of eq Dun = DuDy = exp{ _Z§Ag§(cg —Cy} (B16)
B6, then the occupation probabilities can be extracted from the ’
integral by approximating them by their value at titnéhat is, Here Age = Ag:(M,N) = g:(M,M) — gz(N,N). In evaluating
Pu(t—7) ~ Pw(t). The upper integration limit in eq B6 may eq B15, itis conveniefit to introduce two exponentials, exp-
then be replaced by-c, and one obtains the rate equation 21 (—A1(Vmn/(2K))) and exptA2(Vun/(2K)))), and to define a
of the text with the rate constant eq 22 obtained from function, f(11,42), as
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8K 2 tr,. { ex a,.C. + a,.C)) W2} =
f(Ay.hp) = €™ —tr,;pd exp| —A—— Y DMN(t)D V'b[ Q(Z( e e )) &
h 2K, 1
V)0 ex;{—Zalgazg(l—l—Zn(wE))) (B24)
p( /12 5 )V\/ ] (B17) 2
. . - . where
an expansion of which retaining only the first two terms and
settingd; = A, = 1 yields eq B15. The use of such a function on_ 1
will make it possible to apply a second-order cumulant n(wg) = trVIb{CSCEW( eh wel(KT) _ (B25)
expansion for the evaluation of expectation values as shown
below. . o was introduced. The functioffl1,12) then follows as
The time-dependence Mun(t) and Dun(t) is given by the
time-evolution operatotJo(t), as that . gK?
() = e 'omnt _2’ gPun(®—¢mn(0)
VMN(t) + VMN ;_:l ~ - 2 -
exg —4; »: = U,(t) ex —/'le Uyt) = A1 42)(Gun ()~ CGun(0)) hataFun(t) o(Ae +229)Fun(0) (B26)
r r

exP(‘%Z”g(Cg g it | Cg eiwgl)) (B18) wheregun(t), Gun(t), andFun(t) denote the functions

pun(t) = ZAg;((l + n(wy)) € + n(w,) €°%) (B27)
Dyn(® = Ui)Dyn Ug(t) = :

eXD(—ZAgE(Cg e ! —cle”) (B19) Gy () = ZAggvg((l +n(wy) e — n(w,) € (B28)
where a scaled coupling constantwas introduced: and
ve = v(M,\N) = hwg.(M,N)/(2K)) (B20) Fan() = ZUE (1 + n(wy) €' + n(w,) €”%) (B29)

Using the relation®e? = e**B ¢/2ABl valid when the higher- ) ) _ ) )
order commutators, such a&,[A,B]], vanish, one obtains for ¢ being defined in eq B20. Finally, expanding eq B26 up to

A = 3 (ai:Cs + a:Cl) andB = 3 (as:C; + aC)) bilinear terms inl; and A, and settingl; = 1, = 1 yields
2K,
= eXF(Z((am +ag)Ce + Ky (1) = 2 2t gfun(®=dmn 0’[( = L+ Gyy(t) —
1
(8 + aAE)Cg) ex;{EZ(al§a45 - azéasg)) (B21) GMN(O)) + FMN(t)] (B30)

WhereGMN(t) = (2Kr/h)GMN(t) and FMN(t) = (4Kr2/h2)|EMN(t).
The first product in eq B17 using the above relation becomes The time-dependent functions entering the generalized rate
constant can be expressed in terms of spectral densities

Vin(®)
ex[{_’h? Dun(t) = ex Z{_(/‘Llyg + Junke (@) = ZQE(M,N)QE(K,L)é(w —wy) (B31)
r S
—iwgt wet
Agy) e C + (A, — Av,) € CE}) exr{ leusAgE The functionpun(t) is related to the spectral density containing
(B22) the shiftAg:? = ge(M,M)? + gz(N,N)?> — 2g:(M,M)ge(N,N)
00 i
Treating the remaining products in the same way yields dun(® = [ dw e (L + n(w)) [y (@) +

‘JNN,NN(w) - 2‘JMM,NN(w)] - [‘]MM,MM (—w) +
‘]NN,NN(_w) - ZJMM,NN(_w)]) (B32)

8K,
f(Ah) = —— gt ex (4 +12)ZAgEUE
hl whereJun k. = 0 for w < 0 and also the relation(w) = —(1
- —iwgt _ + n(—w)) were used. The notation in terms &jn kL (—w) in
ex;{ZZ{(Agg+/120€)(Ag§+/11u§) € eq B32 and below does allow one to relate different time-
' dependent functions to a single functign(t) in eq 32 in the
(AQ: — Av:)(AQ: — Aqvy) éw§t}) trip{ €X Z(algcg + text.
’ The functionFun(t) contains the off-diagonal partgs(M,N),

of the coupling
azgcg))vv(‘)} (B23)

—imt 2,
The coefficients in the last line re@d: = Ag: — Axwe — (Age Fun(t) = f dw e (1 + n(w))o Ty mn (@) —
+ Javg) e andaps = —(Ags + Aave) + (Ag: — Awvg) €, Junmn ()] (B33)
where a second-order cumulant expansion, which is exact for
harmonic oscillators, gives for the thermal average in eq B23 And the functionGyn(t) contains the mixed contributions
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Gun(® = [ dor €L+ n(@))[ Iy (@) —
‘JNN,MN(w) - ‘JMM,MN(_w) + ‘]NN,MN(_w)] (B34)

The quantity 2K/h) — Gun(0) in eq B30 can be obtained from
the above spectral density via

I‘<I' 2'MN 00
2% — Gun(0)= R j; do o (Jywmn (@) + Iynun (@)
(B35)

where a new reorganization energyn was introduced. The
generalized rate constant becomes

) A 2
ky—n(t) = 2ot e‘bMN(t)WN(O)[(% + GmN(t)) + Fun(®)
(B36)

Neglecting in eq 15 the dynamic modulation of the electronic
couplings, that is, settingV;(§) = 0 and assuming that the

J. Phys. Chem. A, Vol. 107, No. 41, 2008417
g= ¢yt

The rate constarky—n, given in eqs A24, C6, and C+C19
of ref 53, reads

(C3)

Ky = [ 0t Kigy () (C4)
with

Klr:uvl(t) = KIEIM(t){ gNM,MN(T) - [gMN,MM(T) - gMN,NN(T) +
ZMMN,MM][gMM,NM (r) — gNN,NM(T) + ZMNM,MM]} (C5)

whereK§,,(t) is
i » »
KEM(t) = eXF{_ E(UN — St = Ganan® — Gum (O +

Iuman(® + Iunwm® = 2iAummm — ANN,MM)t} (Ce)

electronic energies at different sites fluctuate independently, theand theld’s are defined as

spectral density eq B31 becomes

M) ) (K) (L) ARG
Junk (@) = Zci G GG Z o(w — wg)
1 Z h(ug
(B37)
If the local coupling constant\E;j(§) are assumed to be

independent of the site indexthat is, there is the same local
modulation of the site energy, eq B37 becomes

(M)
I (@) =)y o M (B38)
I

in terms of the local spectral density in eq 34. The reorganization

energyAun in eq 35 then is obtained from eq B35 using eq

B38. The time-dependent functions eqs B27, B28, and B29 can

then be expressed in terms of a functift) in eq 32 as shown
in eqs 29-31. Using egs 2931, together with eq B36 and B8,
one arrives at thé&y—y in eq 28.

Appendix C: Relation of the Rate ky—n to an Expression
Derived Earlier by Okada, Zhang, Meier, Chernyak, and
Mukamel

Using the Brownian oscillator appro@hand a projection
operator technique, Mukamel and co-worképd>*derived a
rate constant that is identical with the present result in the limit
of a large number of primary oscillators and zero damping by
the bath oscillators, as will be shown in the following. The
function g(t) of the Brownian oscillator approach in this limit
and the functiong,(t) in eq 32 and reorganization energy
in eq 36 in the present treatment are relateéf by

. E/l
9(0) = #(0) — 9o(t) — it (1)

For the calculation of the rate constant in ref 53, the first and
second derivatives aj(t) are needed. They are

) E,

9= —d) ~ i7
. E

= '(¢1(t) - ﬁ) (C2)

and

kL = _![2 IM[ Gy (D] (C7)
For localized vibrations considered théfeas well as in the
present paper, the functiamnk. () is

Ounk (D) = ZCEM)CEN)CEK)CEL)QU) (C8)
n

and therefore it holds alsgunk(t) = TacMcMcIcbyt).
The functionAynke in eq C7 then follows, using eq C2, as

_ M) ~(N) (K) (L
AnnkL = ZCE )an )051 )Cg )E/I (C9)
n

With the use of eqs C1, C8, and C9, the functi¢y,(t) in eq
C6 becomes
KIEIM(t) = g@mntteun()—éun(0) (C10)

where the functionpun(t) is given in eq 29 and thewy is
defined in egs 23 and 17. The fact that thein eq 17 equals
Avmmm Was used.

From egs C3 and C8, thigm mn(7) in eq C5 is seen to equal
the functionFyn(7) in eq 31,

QNM,MN(T) = Fun(?) (C11)

The product of square brackets on the rhs of eq C5 can be

written in terms of the function&wn(t) in eq 30 andimn in eq
35,

[Gvnwm (T) — G (P) T 24 v LG am (7) —

) AN 2
Onunam(®) F 21l = T"' Gun(®)| (C12)

where eqs C2, C8, and C9 were used. Equation 28 of the text
is obtained by introducing eqs CC12 into eqs C5 and C4.

Appendix D: Disorder Dependence of Thermal
Activation for Weak Electronic Couplings

The more delocalized the states of the bridge are, the smaller
is their solvation-vibrational reorganization energyin eq 37.
Any ion reorganization energy accompanying the hole transfer
might be included in a reorganization energy as one possibility
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(ref 67 and references therein). Because the states at G and GG®opping model seem unlikely in the light of recent independent

are strongly localized, their energies are shiftedEpywhereas
the bridge energies are shifted by less tBamecausd.y > 1

for these states. The sizelofi depends on the relative strength
of electronic coupling and disorder. The energy differenogy,

eq 23, that enters the rate constl#ty for thermal activation
from a state localized at G to a bridge state M then is (eq 62)

A

)

hogy = (dg —4) — (SM oy (D1)
where &g and &y are the eigenenergies obtained from the site
energies and couplings by a diagonalization procedure at the
equilibrium configuration of the ground state (no charge carrier
present). Because the state G is strongly localized &t®yas

set to unity as discussed above. Becdyg&ill always decrease
with increasing disorder, on average, the absolute value of the
energy differencéiwgy will become smaller, and therefore,
thermal activation from G to M will become more likely.

Appendix E: Possible Alternative Explanations of the
Flat Distance Dependence within the Nearest-Neighbor
Hopping Model

Within a nearest-neighbor hopping model, the large value of
x from eq 8 is unexpected because the free energy difference,
—AG?®, for hole transfer from the bridge to either the G or the
GGG is larger than that for transfer inside the bridge. A possible
explanation for such largethen could be that the hopping from
the bridge to the GGG and (or) to the G happens in the inverted
regime of electron transfer. To decide whether the individual
transfer steps occur in the normal or in the inverted region of
electron transfer, the standard free enery@;, of an individual
reaction step has to be compared with the reorganization energy
A, for that step. There are no direct measurements@f and
A for all of the individual steps. A detailed discussion of
estimates resulting from different experimemtéf>761 and
theoreticdl®58studies is given in Appendix F. Those estimates
provide no indication for the presence of-a\G° that is larger
than the reorganization energy.

Another possible explanation for the largecould be that
the reorganization energies for the hopping from the bridge are
much larger than those for the intrabridge hopping. In a
numerical study on a model donebridge—acceptor systerif,

experiments and theoretical calculations.

Appendix F: Estimate of Free Energies and
Reorganization Energies

For a hole transfer from G to A, that is, for the reactioh G
+A— G+ A", —AG° in the gas phase can be estimated from
the vertical ionization potentials for G and A in the gas phase
to be approximately 0.2 e¥.From measurements of oxidation
potentials in acetonitrite solutid,a value of 0.47 eV is inferred
for —AG°. However, AG® may well be solvent-dependent.
Recently, the effect of neighboring bases on the value of the
local hole energies has been estimated theoretiéallywas
inferred that, except for bases close to the terminal, the nearest
neighbors of a base have the strongest influence on the energy
of a local hole at that base. If correct, the free energy difference
for hole transfer between two bases X and Y, where X has
nearest neighbors S and V and Y has nearest neighbors W and
Z can be estimated from the difference of local hole energies
of the triplets SXV and WY*Z. The local hole energies were
calculated for all possible combination of triplet bases in ref
60. On this highly uncertain basis, AG® = 0.36 eV would be
deduced for the reaction”A+ G — A + G' at the GGG side
of the bridge.

Different values forA have been measured in different
systems:A = 0.4 eV was measured for hole transfer between
intercalated ethidium molecul&8and/ = 1.22 eV was reported
from time-resolved measurements of hole transfer between a
solvent-exposed stilbene and a neighboring guanine in DNA
hairpins®! The latterA was decomposed into a contributidg
= 0.23 eV from low-frequency solvent modes and a contribution
Ai = 0.99 eV from a high-frequency (1500 c#) quantum
mode®! However, the distinction between intermolecular and
intramolecular contributions té on the basis of a measured
rate constant is quite uncertain, and hence, the influence of the
solvent could have been different than assumed tHeRecent
guantum chemical and molecular dynamics calculations of
Tanaka and Sengof&on the same hairpin yielded a somewhat
largerd = 1.51 eV and a contribution of 1.25 eV to thiafrom
low-frequency modes with energies smaller than 800tm
Because of the solvent exposure of the stilbene,Atmaight
have been larger than that in the ethidium study. In a recent
experimental study of hole transfer in DNA between an
acridine dye and a guaning,= 0.6 eV was determined for a

the peculiar case in which the two reorganization energies differ
by an order of magnitude lead to a flat distance delDendenCE{'gnearest-neighbor reactant pair. For longer distances between hole

Because in the present system neither the G nor the GGG ar donor and acceptor, an even larger reorganization energy was
solvent-exposed, such a difference in reorganization energies - ’p ’ ger reorg gy
reporteck” All A's are larger or only slightly smaller than all of

is not easy to understand. However, as we saw before in anthe CAGY'S
extended states model, the extension of the bridge states ’
decreases their reorganization energies and thus gives faste

transfer.

Another possibility is a difference in electronic couplings for
inter- and intrastrand transfébecause the transfer in the bridge
is of the former and the transfer from G to A and from A to
GGG is of the latter type. Recent ab initio calculatit§
yielded different results. In ref 44, similar intrastrang-A and
interstrand G-A couplings were obtained, whereas in ref 45,
the interstrand G A couplings were calculated to be 1 order
of magnitude smaller than the intrastrand-A couplings.
Nevertheless, as seen in Figure 4, the localized states mode
predicts a steeper distance dependence than is observed in th
experiment also for the latter difference in interstrand and
intrastrand couplings.

In summary, the microscopic parameters that would explain
the flatness of the experimental curve within a nearest-neighbor
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